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SPEC HIGH PERFORMANCE GROUP (HPG) 

• Develops benchmarks that represent high-
performance computing applications for 
standardized, cross-platform performance evaluation. 

• Current Benchmarks 
–  SPEC OMP2012, SPEC MPI2007, SPEC ACCEL 1.0, 1.1 

• Working toward OpenMP 4  SPEC ACCEL 1.2 
–  Portable across architectures (host, GPUs, XeonPhi) 
– Works with at least two compilers 

• Active members: 
–  NVIDIA*, SGI, Intel*, IBM*, AMD, Argonne*, ORNL*, HZDR, 

Oracle, University of Delaware, University of Virginia, 
RWTH Aachen University, University of Illinois, Indiana 
University, TU Dresden 

*Present at the DOE workshop 
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OpenMP 4.0 – Performance Portability 
 (Meeting in Berlin) 

• We had a meeting and discussed a strategy on how 
to write “performance portable” style in OpenMP 4 
–  Initially members had different views. 
– We agreed on some “guidelines” on how to write portable 

code 
– We used these “guidelines” and successfully parallelized 

the 16 benchmarks with OpenMP 4 
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SPEC ACCEL: OpenMP 4 Candidates* 
* (SPEC/HPG – Confidential) 

OpenACC Benchmarks Language Origin Domain 

503.ostencil C Parboil, University of Illinois Thermodynamics 

504.olbm C Parboil, University of Illinois CFDm Lattice Boltzmann 

514.omriq C Rodinia, University of Virginia  Medicine 

550.md Fortran Indiana University Molecular Dyn. 

551.palm Fortran Leibniz University of Hannover Large-eddy sim. 

552.ep C NAS Parallel Benchmarks (NPB) Embarrassing P. 

553.clvrleaf C, Fortran Atomic Weapons Establishments Hydrodynamics 

554.cg C NPB Conjugate Grad. 

555.seismic Fortran GeoDynamics.org Seismic Wave Modeling 
(PDE) 

556.sp Fortran NPB Scalar Peta-d solv 

557.csp C NPB Scalar Peta-d solv 

559.miniGhost C, Fortran Sandia National Laboratory Finite difference 

560.ilbdc Fortran SPEC OMP2012 Fluid Mechanics 

563.swim Fortran SPEC OMP2012 Weather 

570.bt C NPB BTS 3D PDE 



5 

Guidelines – To write OpenMP 4 
“Performance Portable Style” 

• Use OpenMP 4 “Accelerator Model” 
• Do not specify: 

–  # of teams   
–  # thread_limit,  
–  # of threads – in parallel regions 
–  SIMD length 
–  dist_schedule – in distribute 
–  loop schedules – in parallel do 

• Compiler implementers should pick these values to 
enable performance portability 
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Guidelines – To write OpenMP 4 
“Performance Portable Style” 

• For level-1 loopnest 
•  #pragma target teams distribute parallel for simd 

• For perfectly nested loops 
–  Use the following nesting of parallelism 

#pragma omp target teams distribute parallel for collapse(N) 
for(i=0;….) 
   for(j=0;….)  
#pragma omp simd       

  for(k=0;…) 

• Parallelize the inner loops always with SIMD 
• Do not collapse inner loops 
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Guidelines for OpenMP 4 
• Reductions 

–  Reduction variables need to be mapped to/from 
#pragma omp target map(tofrom:sum) 
#pragma omp teams distribute parallel for reduction(+:sum) 

 for(…. ) 
         sum = sum + …. 

• Privatization 
– We should only privatize only at a nesting level 

#pragma omp teams distribute parallel for  // private(yy, zz) 
for(i= …. ) 
   for(j= … ) 
#pragma omp simd private(yy,zz) 
       for(z= … 
                 yy = 
                 zz = 
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Guidelines for OpenMP 4 
• Don’t merge target regions if they have 

dependences across loopnests (otherwise do) 
#pragma omp target teams distribute parallel for 

for(i=…) 
     a[i] =  

#pragma omp target teams distribute parallel for 
for(i=…) 
    b[i] = 

•  To: 
#pragma omp target teams 
#pragma omp distribute 

     for(i=…) 

         a[i] =  
#pragma omp distribute  

 for(i=…) 
        b[i] = 
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Example – jacobi.f – Portable OpenMP  

!$omp target map(tofrom: error) 

!$omp teams distribute parallel do reduction(+:error) 

         do j = 2,m-1 

!$omp simd private(resid) 

            do i = 2,n-1 

               resid = [computes resid from I,j-arrays] 

*              error = error + resid*resid 

            end do 

         enddo 

!$omp end teams distribute parallel do 

!$omp end target 
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Preliminary results are showing 

•  If you want performance portability in your codes 
across platforms: 
–  USE OPENMP 4.0 “Accelerator Model” 
–  This includes: 

•  GPUs 
•  Xeon Phi (self-hosted) 
•  CPUs 

• Compilers should tune and pick code for a given 
architecture – unless you want to auto-tune. 

• Compilers are still working on their OpenMP 
implementations and few support multiple 
architectures for OpenMP 4.0 accelerator model 


